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Abstract. Based on the rationalR-matrix of the supersymmetricsl(2, 1) matrix difference
equations are solved by means of a generalization of the nested algebraic Bethe ansatz. These
solutions are shown to be of highest weight with respect to the underlying graded Lie algebra
structure.

1. Introduction

The supersymmetric t-J model is often considered a candidate for describing high-Tc
superconductivity [1–3]. The underlying symmetry is described by the supersymmetric
(graded) Lie algebrasl(2, 1). Integrable models with supersymmetry have been discussed
in [4–9]. This paper extends the results in [10, 11] on matrix difference equations and a
generalized version of the algebraic Bethe ansatz for ordinary or quantum groups to this
supersymmetric Lie algebra. We recall that matrix difference equations play an important role
in mathematical physics (see, e.g., [12–15]). In particular, in the context of quantum integrable
field theories they provide solutions of the formfactor equations, which can be used to calculate
correlation functions [16]. This type of matrix difference equations can also be considered as
a discrete version [17] of a Knizhnik–Zamolodchikov system [18].

The conventional algebraic Bethe ansatz is used to solve the eigenvalue problem of a
Hamiltonian in a way closely related to the underlying symmetry of the considered model (see,
e.g., [19]). One constructs the eigenvectors as highest-weight vectors of the corresponding
irreducible representations either of the ordinary Lie algebra or theq-deformed analogue,
the quantum group. By this construction one encounters ‘unwanted’ terms. The eigenvalue
equation is fulfilled if all of these ‘unwanted’ terms vanish, which leads to the so-called Bethe
ansatz equations.

The ‘off-shell’ Bethe ansatz [10, 11, 17, 20, 21] is used to solve matrix differential or
difference equations. The solution is represented as an integral or a sum over some lattice (an
integral of Jackson type). The ‘unwanted’ terms arising in this case do not vanish due to the
Bethe ansatz equations but they sum up to zero under the integral or sum. This modification
of the Bethe ansatz was originally introduced to solve Knizhnik–Zamolodchikov equations
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[20]. It has also been applied to the quantization of dimensionally reduced gravity [22] in this
connection.

Let f 1···n(x) : Cn → V 1···n = ⊗n
j=1C3 be a vector-valued function with the following

symmetry property:

f ···ij ···(. . . , xi, xj , . . .) = Rji(xj − xi)f ···ji···(. . . , xj , xi, . . .) (1)

whereR is thesl(2, 1)R-matrix (see below). We consider the set of matrix difference equations

f 1···n(x1, . . . , xi + ξ, . . . , xn) = Q1···n(x|i)f 1···n(x) (i = 1, . . . , n) (2)

with an arbitrary shift parameterξ and some sort of generalized transfer matrixQ1···n(x|i)
which is invariant undersl(2, 1). Functions satisfying (1) and (2) will be calledR-symmetric
andQ-periodic, respectively.

2. Matrix difference equation and generalized nested Bethe ansatz

Let V 1···n = V1 ⊗ · · · ⊗ Vn be the tensor product ofn isomorphic vector spacesVi =
Span{|1〉, |2〉, |3〉} ∼= C3. The states|1〉 and |2〉 are supposed to be bosonic, while|3〉
is fermionic [3]. For later convenience we also define the reduced vector spacesṼi =
Span{|2〉, |3〉} ∼= C2 and Ṽ 1···m = Ṽ1 ⊗ · · · ⊗ Ṽm. Vectors inV 1···n will be denoted
by f 1···n ∈ V 1···n. Analogously, vectors in the reduced spaces are, in addition, marked
with a tilde: f̃ 1···m ∈ Ṽ 1···m. Matrices acting inV 1···n are denoted by index subscripts
Q1···n : V 1···n→ V 1···n.

As usual, theR-matrix will depend on a spectral parameterθ . This matrixRij (θ) :
Vi ⊗ Vj → Vj ⊗ Vi is of the form [23]

Rij (θ) = b(θ)6ij + c(θ)Pij (3)

wherePij : |α〉 ⊗ |β〉 7→ |α〉 ⊗ |β〉 is the permutation operator and

6ij : |α〉 ⊗ |β〉 7→ σαβ |β〉 ⊗ |α〉 =
{
−|β〉 ⊗ |α〉 |α〉 = |β〉 = |3〉
|β〉 ⊗ |α〉 otherwise.

The statistics factorσαβ = ±1 takes the fermionic character of the state|3〉 into account. It
has the value−1 if and only if both states are fermionic, i.e.α = β = 3. The functionsb(θ)
andc(θ) have the form

b(θ) = θ

θ +K
c(θ) = K

θ +K

with an arbitrary constantK. For later use we define the functionw(θ) = −b(θ) + c(θ). It is
easy to check thatR(θ) is unitary and satisfies the Yang–Baxter equation:

Rab(θ)Rba(−θ) = 1 and R12(θ12)R13(θ13)R23(θ23) = R23(θ23)R13(θ13)R12(θ12)

(4)

whereθij = θi − θj .
Next we introduce different kinds of monodromy matrices which prove to be useful in the

following. The monodromy matrix

T1···n,a(x|u) = R1a(x1− u) · · ·Rna(xn − u)
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is an operatorV 1···n⊗Va → Va⊗V 1···n. The vector spacesV 1···n andVa are called the quantum
and auxiliary space, respectively. As usual we will consider this operator as a matrix

T1···n,a =
 A B2 B3

C2 D2
2 D2

3

C3 D3
2 D3

3


over the auxiliary space with operators in the quantum space as entries. As a consequence
of (4) the monodromy matrix fulfils the Yang–Baxter algebra relation

Rab(u− v)T1···n,b(x|v)T1···n,a(x|u) = T1···n,a(x|u)T1···n,b(x|v)Rab(u− v). (5)

Following [10] we also introduce another set of modified monodromy matrices for
i = 1, . . . , n given as

T
Q
1···n,a(x|i) = R1a(x1− xi) · · ·Ri−1a(xi−1− xi)PiaRi+1a(xi+1− x ′i ) · · ·Rna(xn − x ′i ) (6)

wherex ′ = x + ξei . In the same way as above they should be considered as matrices in the
auxiliary space. This new type of monodromy matrix satisfies the two mixed Yang–Baxter
relations

T
Q
1···n,a(x|i)T1···n,b(x|u)Rab(x ′i − u) = Rab(xi − u)T1···n,b(x ′|u)T Q1···n,a(x|i) (7)

T1···n,a(x ′|u)T Q1···n,a(x|i)Rab(u− x ′i ) = Rab(u− xi)T Q1···n,b(x|i)T1···n,a(x|u). (8)

For i = n the modified monodromy matrix is the same as the ordinary one.
We want to encode the fermionic nature of the state|3〉 in such a way thatsl(2, 1) appears

naturally. To do so we define an additional monodromy matrix

[T ?1···n,a(x|u)]β,{ν}α,{µ} = σαβσβν1 · · · σβνn [T1···n,a(x|u)]β,{ν}α,{µ} (9)

where the quantum space indices are collected in the notation{ν} = ν1, . . . , νn. This definition
is easily extended to a modified version as before. The shift operator is defined by

Q1···n(x|i) = tra T
?Q
1···n,a(x|i) = AQ1···n,a(x|i) +

∑
α=2,3

[
D?Q

1···n,a(x|i)
]α
α

(10)

which is obviously closely related to usual transfer matrices. For all operators just defined
there also exists a counterpart in the reduced spaces denoted by a tilde.

Using the Yang–Baxter relations given above we derive in a straightforward way the
commutation relations

Bi(x|u2)Bj (x|u1) = Bj ′(x|u1)Bi ′(x|u2)R
i ′j ′
ji (u1− u2) (11)

A(x|u2)Bi(x|u1) = 1

b(u2 − u1)
Bi(x|u1)A(x|u2)− c(u2 − u1)

b(u2 − u1)
Bi(x|u2)A(x|u1) (12)

AQ(x|i)Bj (x|u) = 1

b(x ′i − u)
Bj (x

′|u)AQ(x|i)− c(x
′
i − u)

b(x ′i − u)
B
Q
j (x|i)A(x|u) (13)

D?i
j (x|u2)Bk(x|u1) = σik

b(u1− u2)
Bk′(x|u1)D

?i
j ′(x|u2)R

j ′k′
kj (u1− u2)

−σik c(u1− u2)

b(u1− u2)
Bj (x|u2)D

?i
k(x|u1) (14)

D?Qj

k (x|i)Bl(x|u) = σjl
1

b(u− xi)Bl
′(x ′|u)D?Qj

k′ (x|i)Rk
′l′
lk (u− x ′i )

−σjl c(u− xi)
b(u− xi)B

Q
k (x|i)D?j

l (x|u). (15)
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The first terms on the right-hand side of each of these equations are called ‘wanted’ and the
others ‘unwanted’. These relations are slightly different from those appearing in theSU(N)

case [10] due to the statistics factorsσ in the last two equations.
To solve the system of (1) and the matrix difference equations (2) we use the nested

so-called ‘off-shell’ Bethe ansatz [20, 21] with two levels. The first level is quite analogous
to the constructions in [10, 11]. Due to the fermionic statistics of state|3〉 which ensures
supersymmetry the second level is different. This problem is solved in the present paper. We
write the vector-valued functionf 1···n : Cn→ V 1···n as a sum of first level Bethe ansatz vectors

f 1···n(x) =
∑
u

Bβm(x|um) · · ·Bβ1(x|u1)�
1···n[g1···m(x|u)]β1···βm. (16)

The sum is extended overu ∈ u0 − ξZm ⊂ Cm (an ‘integral of Jackson type’,u0 ∈ Cm
arbitrary). The reference state�1···n is given by�1···n = |1〉⊗n and the auxiliary function
g1···m : Cn×Cm→ Ṽ 1···m is defined byg1···m(x|u) = η(x|u)f̃ 1···m(u)with η : Cn×Cm→ C,

η(x|u) =
n∏
i=1

m∏
j=1

ψ(xi − uj )
∏

16i<j6m
τ(ui − uj )

where the scalar functionsψ : C→ C andτ : C→ C satisfy

b(x)ψ(x) = ψ(x − ξ) τ (x)

b(x)
= τ(x − ξ)
b(ξ − x) . (17)

Possible solutions are

ψ(x) = 0(1 +K/ξ + x/ξ)

0(1 +x/ξ)
and τ(x) = x 0(x/ξ −K/ξ)

0(1 +x/ξ +K/ξ)
. (18)

They may be multiplied by an arbitrary function which is periodic inξ .
We prove thatf 1···n(x) is R-symmetric andQ-periodic if f̃ 1···m(u) is R̃-symmetric and

Q̃-periodic. To compute the action of the shift operatorQ on our Bethe ansatz function
f 1···n(x) we start from (10) and commute the operatorsAQ andD?Q through all theB-
operators to the right where they act on the reference states according toAQ(x|m)�1···n = �1···n

and
[
D?Q(x|m)]α′

α
�1···n = 0. If f̃ 1···m(u) is R̃-symmetric one obtains the representations

(x ′ = x + ξen)

A?
Q
(x|n)f 1···n(x) = f 1···n(x ′) +

∑
u

m∑
i=1

3
(i)
A (x|u)BQβi (x|n)

×Bβm(x|um) · · · ̂Bβi (x|ui) · · ·Bβ1(x|u1)�
1···n

×η(x|u)[f̃ 1···mi(u1, . . . , um, ui)
]β1···βmβi

[D?Q(x|n)]ααf 1···n(x) =
∑
u

m∑
i=1

3
(i)
D (x|u)BQβi (x|n)Bβm(x|um) · · · ̂Bβi (x|ui) · · ·Bβ1(x|u1)

×�1···nη(x|u)[Q̃(u1, . . . , um, ui |i)f̃ 1···mi(u1, . . . , um, ui)
]β1···βmβi

.

The hat denotes a factor which is omitted andQ̃(u1, . . . , um, ui |i) is an analogue to the shift
operator (10) in the dimensionally reduced spaceṼ 1···mi . The ‘wanted’ contributions already
ensure the validity of (2), so ‘unwanted’ ones have to sum up to zero. The representation
can be obtained as follows: the expression in front of the sum is a consequence of the
‘wanted’ parts of the commutation relations (11)–(15). To determine the functions3

(i)
A (x|u)
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and3(i)
D (x|u) one has to perform the following steps: first moveBβi (x|ui) to the front of theB-

operators according to (11) and use theR̃-symmetry off̃ (u) to absorb them. Then consider the
‘unwanted’ contributions of (13) and (15), respectively. Now commute the resulting operators
A(x|ui) andD?(x|ui) to the right and only take the ‘wanted’ contributions into account. This
gives a product ofR-matrices and statistics factors in the case ofD?. The action on the reference
state is given byA(x|ui)�1···n = �1···n and [D?(x|ui)]α′α �1···n = δα′α σαα′

∏n
j=1 b(xj−ui)�1···n,

respectively. By an ‘ice rule’ for fermions one can regroup the statistics factors. Together with
theR-matrices this gives the reduced shift operatorQ̃(u1, . . . , um, ui |i). Finally, one obtains

3
(i)
A (x|u) = −

c(x ′n − ui)
b(x ′n − ui)

∏
l 6=i

1

b(ui − ul)

3
(i)
D (x|u) = −

c(ui − xn)
b(ui − xn)

∏
l 6=i

1

b(ul − ui)
n∏
l=1

b(xl − ui).

As already mentioned we have to show that the contributions of the sums cancel.
Following the arguments of [10], i.e. using (17) and the relationc(x)/b(x) = −c(−x)/b(−x),
one can indeed show that these ‘unwanted’ contributions vanish after the summation, if
f̃ 1···m(u) is Q̃-periodic. The symmetry ofη(x|u) in the argumentsx1, . . . , xn combined with
Rij (θ)�

1···n = �1···n implies theR-symmetry off 1···n(x).
The next step consists of the construction of a functionf̃ 1···m(u) which is R̃-symmetric

andQ̃-periodic. As above we write

f̃ 1···m(u) =
∑
v

B̃(u|vk) · · · B̃(u|v1)�̃
1···mg̃(u|v). (19)

The sum is extended overv ∈ v0− ξZk ⊂ Ck (v0 ∈ Ck arbitrary). Here the reference state is
given by�̃1···m = |2〉⊗m and the auxiliary functioñg : Cm × Ck → C reads

g̃(u|v) =
m∏
i=1

k∏
j=1

ψ(ui − vj )
∏

16i<j6k
τ̃ (vi − vj )

whereψ : C→ C andτ̃ : C→ C satisfy

b(x)ψ(x) = ψ(x − ξ) τ̃ (x)

b(−x) =
τ̃ (x − ξ)
b(ξ − x) . (20)

Possible solutions of (20) are given by (18) andτ̃ (x) = x/(x−K). Again both functions may
be multiplied by an arbitrary function which is periodic inξ . Note that the supersymmetry has
modified the last equation compared to (17).

The Yang–Baxter relations imply the commutation relations

B̃(u|v2)B̃(u|v1) = w(v1− v2)B̃(u|v1)B̃(u|v2)

Ã(u|v2)B̃(u|v1) = 1

b(v2 − v1)
B̃(u|v1)Ã(u|v2)− c(v2 − v1)

b(v2 − v1)
B̃(u|v2)Ã(u|v1)

ÃQ(u|i)B̃(u|v) = 1

b(u′i − v)
B̃(u ′|v)ÃQ(u|i)− c(u

′
i − v)

b(u′i − v)
B̃Q(u|i)Ã(u|v)

D̃?(u|v2)B̃(u|v1) = −w(v1− v2)

b(v1− v2)
B̃(u|v1)D̃?(u|v2) +

c(v1− v2)

b(v1− v2)
B̃(u|v2)D̃?(u|v1)

D̃?
Q
(u|i)B̃(u|v) = −w(v − u

′
i )

b(v − ui) B̃(u
′|v)D̃?

Q
(u|i) +

c(v − ui)
b(v − ui) B̃

Q(u|i)D̃?(u|v).
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Due to supersymmetry these relations are structurally different from those for the ordinary
group case [10]. As a consequence the functionτ̃ has to satisfy a slightly modified functional
equation (20) compared toτ in (17).

Next we act with the shift operator̃Q1···m(u|i) = ÃQ(u|i)+ D̃?
Q
(u|i) on the Bethe ansatz

vectorf̃ 1···m(u) and repeat the arguments given above. Equations (2) are equivalent for alli =
1, . . . , m, so we will restrict ourselves toi = m. Using the relations̃AQ(u|m)�̃1···m = �̃1···m

andD̃?
Q
(u|m)�̃1···m = 0 we obtain the representations (u ′ = u + ξem)

Ã?
Q
(u|m)f̃ 1···m(u) = f̃ 1···m(u ′)

+
∑
v

k∑
i=1

3̃
(i)
A (u|v)B̃Q(u|m)B̃(u|vk) · · · ˜̂B(u|vi) · · · B̃(u|v1)�̃g̃(u|v) (21)

D̃?
Q
(u|m)f̃ 1···m(u) =

∑
v

k∑
i=1

3̃
(i)
D (u|v)B̃Q(u|m)B̃(u|vk) · · · ˜̂B(u|vi) · · · B̃(u|v1)�̃g̃(u|v).

(22)

By similar arguments to those given previously one can show that the functions3̃
(i)
A (u|v) and

3̃
(i)
D (u|v) are given by

3̃
(i)
A (u|v) = −

c(u′m − vi)
b(u′m − vi)

∏
l<i

1

b(vi − vl)
∏
l>i

−1

b(vl − vi)

3̃
(i)
D (u|v) =

c(vi − um)
b(vi − um)

∏
l<i

1

b(vi − vl)
∏
l>i

−1

b(vl − vi)
m∏
l=1

b(ul − vi).

We made use of the fact thatw(θ)w(−θ) = 1 andw(θ)/b(θ) = −1/b(−θ).
Again the ‘wanted’ contributions already guarantee the validity of (2) while a

straightforward calculation using (20) andc(x)/b(x) = −c(−x)/b(−x) shows that the
‘unwanted’ contributions sum up to zero. ThẽR-symmetry is implied by the symmetry of
g̃(u|v) in the variablesu1, . . . , um and the propertỹRij (θ)�̃1···m = �̃1···m.

Finally, we have proved thatf 1···n given by the Bethe ansatz (16) solves the combined
system ofR-symmetry (1) and the matrix difference equations (2) if analogous relations hold
for f̃ 1···m. It was shown that solutions to the dimensional reduced problem can be constructed
explicitly by use of the Bethe ansatz (19).

3. Highest-weight property

We now investigate thesl(2, 1) properties of the shift operatorQ1···n and of the solutions (16)
constructed above. The behaviourRab(x) = 6ab + (K/x)Pab + O(x−2) for x → ∞ implies
the asymptotic expansion

[T1···n,a(x|u)]β,{ν}α,{γ } =
[
61a · · ·6na +

K

u

n∑
j=1

61a · · ·Pja · · ·6na
]β,{ν}
α,{γ }

+ O(u−2)

= σα,{µ}δβα δν1
µ1
· · · δνnµn +

K

u
σβασβ,{ν}M

β,{ν}
α,{µ} + O(u−2).

The operatorsMβ,{ν}
α,{µ} have the form

M
β,{ν}
α,{µ} =

∑
j

σβνj+1 · · · σβνnσανj+1 · · · σανnδν1
µ1
· · · δνj−1

µj−1δ
β
µj
δ
νj
α δ

νj+1
µj+1 · · · δνnµn . (23)
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From this one derives the commutation relations

Mα′
α T

?β
′
β (u)− σαβσαβ ′σα′βσα′β ′T ?β

′
β (u)M

α′
α = δα

′
β T

?β
′
α(u)− σαβσαβ ′σα′βσα′β ′δβ

′
α T

?α
′
β(u) (24)

where the quantum space indices have been neglected. A further consequence is

Mα′
α M

β ′
β − σαβσαβ ′σα′βσα′β ′Mβ ′

β M
α′
α = δα

′
β M

β ′
α − σαβσαβ ′σα′βσα′β ′δβ

′
α M

α′
β (25)

for u→∞. This implies that the operatorsMα′
α are generators ofsl(2, 1) in the Cartan–Weyl

basis (see [3, 24]). From (24) one can derive the invariance property [Mα′
α ,Q(u|i)]− = 0. This

means that from any solution of (2) further solutions may be constructed by applying raising
and lowering operators ofsl(2, 1). The operatorsWα = Mα

α (no summation with respect to
α) satisfy the commutation relations [Wα,Wβ ]− = 0 and generate the Cartan subalgebra. For
α = β the statistic signs in (23) cancel and therefore we obtain

[Wα]{ν}{µ} =
∑
j

δν1
µ1
· · · δνj−1

µj−1δ
α
µj
δ
νj
α δ

νj+1
µj+1 · · · δνnµn . (26)

The highest-weight property of the Bethe ansatz functionsMα′
α f

1···n(x) = 0 for α′ > α

is proven in a way analogous to that used in section 2. In other words, one uses commutation
relations implied by (24), then commutes the matricesMα′

α through allB-operators to the right
and finally, one uses certain eigenvalue equations. Again one has ‘wanted’ and ‘unwanted’
contributions and the summation guarantees the vanishing of the latter (cf [10]). After some
calculation one obtains the weight vector which is defined byWαf (x) = wαf (x) and reads

w = (n−m,m− k, k).
The highest-weight conditions arew1 > w2 > −w3 andw1, w2, w3 > 0 [3].

4. Conclusions and outlook

In this paper we have discussed a combined system of matrix difference equations based on the
supersymmetric Lie algebrasl(2, 1). Solutions are constructed by means of a nested version of
the so-called off-shell Bethe ansatz and shown to be of highest weight with respect tosl(2, 1).
Due to the invariance of the shift operatorQ1···m under the generators ofsl(2, 1) it is possible
to construct and classify further solutions by purely group-theoretic considerations.

It would be interesting to see whether there is a quantum integrable (relativistic) field theory
associated with the supersymmetric t-J model. In that case the methods presented here could
be used to determine the corresponding correlation functions. In this context the extension of
our results to theq-deformed caseUq [sl(2, 1)] would also be of interest [2, 25]. Recently, an
integrable quantum field theory has been discussed which is based on theosp(2, 2) graded Lie
algebra [4] which is isomorphic tosl(2, 1).
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